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Introduction & Motivation

® Deep neural networks are susceptible to adversarial weight bit-flip attacks.

e ... through hardware-induced fault injection on DNN memory.
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e Targeting an attacked source (i.e., a single sample or samples of a class).



Introduction & Motivation

® A recent concerning threat: finding minimal targeted and stealthy bit-flips.
e Targeting an attacked source (i.e., a single sample or samples of a class).

* Preserving expected behavior for un-targeted test samples.

&‘> Renders the attack undetectable when there is no unusual activity.

[1] Liu et al., “Fault injection attack on deep neural network”, ICCAD 2017.
[2] Zhao et al., “Fault sneaking attack: A stealthy framework for misleading deep neural networks”, DAC 2019.
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Stealthy Targeted Attack with Limited Bit-Flips (TA-LBF)
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[3] Rakin et al., “T-BFA: Targeted bit-flip adversarial weight attack”, IEEE TPAMI 2021.
[4] Bai et al., “Targeted attack against deep neural networks via flipping limited weight bits”, ICLR 2021.



Stealthy Targeted Attack with Limited Bit-Flips (TA-LBF)
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[3] Rakin et al., “T-BFA: Targeted bit-flip adversarial weight attack”, IEEE TPAMI 2021.
[4] Bai et al., “Targeted attack against deep neural networks via flipping limited weight bits”, ICLR 2021.



Introduction & Motivation

* No effective defense tailored against stealthy adversarial bit-flips exists.

n. How can we confront the stealthiness objective of an attacker for such
targeted attacks assuming a well-informed adversary?
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Standard One-hot Output Encoding (Vanilla)
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Proposed Output Code Matching (OCM)

;}5 What if we use an output coding scheme where the usual one-hot
- ¥ encoding is replaced by partially overlapping bit strings?
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Proposed Output Code Matching (OCM)
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Proposed Output Code Matching (OCM)
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Proposed Output Code Matching (OCM)
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Proposed Output Code Matching (OCM)
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Results on CIFAR-10

Table 1. Evaluations of 8-bit and 4-bit quantized ResNet-20 models under stealthy weight bit-flip attacks for CIFAR-10. Test set clean
accuracy, ASR and PA-ACC percentages (%) are presented alongside # bit-flips needed for the attack. Stealthy T-BFA attacks [26] are run
until all source class set examples used by the attacker are misclassified, and all stealthy T-BFA evaluation metrics are averaged across 100
targeted attack experiments. Stealthy TA-LBF attacks [3] are performed for 1000 single sample attacks, where each one of the 10 classes
is the target class for 100 different source images that belong to any other class.

: Piecewise Ours
Vanilla ,
Clustering [16]  OCM;s OCM;, OCMg,4

Clean Acc. on CIFAR-10 92.25 91.11 90.67 90.72 90.26
- Stealth ASR (\) 99.10 99.46 99.48 99.56 99.58
T o 1;;1 ' Y PAACC(N) 8438039  7678(45) 532215 50018 4639 167)
;°Z; 2 [26] | #bit-flips (M) | 27.91 §8.70) 74.93 (26.7) 95.65 (324) 127.88 (540) _| 281.75&(115.6)
O~ ___

ASR ' ’
a Stealthy p :_ Aéé)(\,) ~10x more # bit-flips needed
TA-LBF [3]

# bit-flips ()

| = E— - . = =SS ——— =———=———— —_ ___— _——————
" Attacks are well-informed about the defense, i.e., uses the L1-norm objective and class-specific codes. |




Results on CIFAR-10

Table 1. Evaluations of 8-bit and 4-bit quantized ResNet-20 models under stealthy weight bit-flip attacks for CIFAR-10. Test set clean
accuracy, ASR and PA-ACC percentages (%) are presented alongside # bit-flips needed for the attack. Stealthy T-BFA attacks [26] are run
until all source class set examples used by the attacker are misclassified, and all stealthy T-BFA evaluation metrics are averaged across 100
targeted attack experiments. Stealthy TA-LBF attacks [3] are performed for 1000 single sample attacks, where each one of the 10 classes

is the target class for 100 different source images that belong to any other class.
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anilla ,
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Clean Acc. on CIFAR-10 92.25 91.11 90.67 90.72
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Vo TB;; 56 PA-ACC (\)  8438(339 7678 (745 532215 50.01(182) _46.39 (16.7)
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# bit-flips ()

[5] He et al., “Defending and harnessing the bit-flip based adversarial weight attack”, CVPR 2020.



Results on CIFAR-10

Table 1. Evaluations of 8-bit and 4-bit quantized ResNet-20 models under stealthy weight bit-flip attacks for CIFAR-10. Test set clean
accuracy, ASR and PA-ACC percentages (%) are presented alongside # bit-flips needed for the attack. Stealthy T-BFA attacks [26] are run
until all source class set examples used by the attacker are misclassified, and all stealthy T-BFA evaluation metrics are averaged across 100
targeted attack experiments. Stealthy TA-LBF attacks [3] are performed for 1000 single sample attacks, where each one of the 10 classes
is the target class for 100 different source images that belong to any other class.
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Results on CIFAR-10

Table 1. Evaluations of 8-bit and 4-bit quantized ResNet-20 models under stealthy weight bit-flip attacks for CIFAR-10. Test set clean
accuracy, ASR and PA-ACC percentages (%) are presented alongside # bit-flips needed for the attack. Stealthy T-BFA attacks [26] are run
until all source class set examples used by the attacker are misclassified, and all stealthy T-BFA evaluation metrics are averaged across 100
targeted attack experiments. Stealthy TA-LBF attacks [3] are performed for 1000 single sample attacks, where each one of the 10 classes
is the target class for 100 different source images that belong to any other class.
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Clustering [16]  OCM;¢ OCM;, OCMg;,
Clean Acc. on CIFAR-10 92.25 91.11 90.67 90.72 90.26
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Results on ImageNet

by only OCM finetuning of
pre-trained models...

Table 3. Stealthy T-BFA [26] evaluations with 8-bit and 4-bit quantized ResNet-50 models on ImageNet. Attacks are run until all source

class set examples used by the attacker are misclassified. Test set clean accuracy, ASR and PA-ACC percentages (%) are presented
alongside # bit-flips needed to attack. All evaluation metrics are averaged across 500 targeted attack experiments.
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Table 3. Stealthy T-BFA [26] evaluations with 8-bit and 4-bit quantized ResNet-50 models on ImageNet. Attacks are run until all source

class set examples used by the attacker are misclassified. Test set clean accuracy, ASR and PA-ACC percentages (%) are presented
alongside # bit-flips needed to attack. All evaluation metrics are averaged across 500 targeted attack experiments.
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Results on ImageNet

by only OCM finetuning of

pre-trained models...
Table 3. Stealthy T-BFA [26] evaluations with 8-bit and 4-bit quantized ResNet-50 models on ImageNet. Attacks are run until all source

class set examples used by the attacker are misclassified. Test set clean accuracy, ASR and PA-ACC percentages (%) are presented
alongside # bit-flips needed to attack. All evaluation metrics are averaged across 500 targeted attack experiments.
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Thank you for your attention!

Code: https://github.com/IGITUGraz/OutputCodeMatching
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Abstract

Deep neural networks (DNNs) have been shown to
be vulnerable against adversarial weight bit-flip attacks
through hardware-induced fault-injection methods on the
memory systems where network parameters are stored. Re-
cent attacks pose the further concerning threat of finding
minimal targeted and stealthy weight bit-flips that preserve
expected behavior for untargeted test samples. This renders
the attack undetectable from a DNN operation perspective.
We propose a DNN defense mechanism to improve robust-
ness in such realistic stealthy weight bit-flip attack scenar-
ios. Our output code matching networks use an output cod-
ing scheme where the usual one-hot encoding of classes is
replaced by partially overlapping bit strings. We show that
this encoding significantly reduces attack stealthiness. Im-
portantly, our approach is compatible with existing defenses
and DNN architectures. It can be efficiently implemented on
pre-trained models by simply re-defining the output classifi-
cation layer and finetuning. Experimental benchmark eval-
uations show that output code matching is superior to exist-
ing regularized weight quantization based defenses, and an
effective defense against stealthy weight bit-flip attacks.

1. Introduction

While deep neural networks (DNNs) are becoming ubig-
uitous in artificial intelligence applications, they also have
been proven to be highly vulnerable to a variety of ma-
licious attack paradigms. One of the most widely stud-
ied aspect is the adversarial input attack, where hardly-
perceptible and intentionally crafted input perturbations can
lead to confident incorrect decisions for DNNs [13,33]. A
recently emerged category of attacks exposes the parame-
ter space vulnerability of DNNs by negatively influencing
the inference process at the deployment stage. It has been
shown that information stored in the form of bits on dy-
namic random-access memory (DRAM) chips can be sim-

ply manipulated by flipping any bit precisely as desired via
fault-injection techniques (e.g., row-hammer attacks [19]).
As the weight parameters of widely deployed DNNs are
generally stored on the DRAM due to their high mem-
ory demand, such hardware-induced attacks open malicious
pathways to jeopardize DNN predictions by changing vul-
nerable parameters [7,17,22,41].

There has been growing interest in developing adversar-
ial weight bit-flip attack algorithms to identify vulnerable
quantized DNN bits in simulations (cf. Section 2.1), in or-
der to provide practical guidance for fault-injection attacks
towards reaching malicious goals against expected DNN
behavior. As physical bit-flipping may become time con-
suming and lead to abnormal background processes [ 14,36],
constraining the number of malicious bit-flips for efficient
attacks is essential for the adversary. Going forward, re-
cently proposed algorithms also consider finding minimal
bits for targeted and stealthy weight bit-flip attacks, i.e.,
having a targeted negative impact on an attacked source (a
single input sample [3] or samples belonging to a class [26])
while having almost no change in performance for the re-
maining test samples. From a DNN operation perspective,
such a scenario is far more concerning as it becomes impos-
sible to suspect any unusual activity if the network shows
expected behavior for untargeted test samples.

To date, relatively little guidance is available for how
to improve network robustness against adversarial weight
bit-flip attacks (cf. Section 2.2). Our goal in this study
is to improve robustness from a DNN architecture per-
spective, which would also be naturally compatible to po-
tential hardware-driven solutions against fault-injection at-
tacks. We particularly focus on more realistic, targeted at-
tack scenarios, where the existence of the attack also can
not be easily detected via the usual DNN behavior, i.e., tar-
geted bit-flip attack algorithms with stealthiness [3,26]. We
approach this problem using an alternative output coding
scheme for multi-class classification with DNNs, in com-
parison to the usual one-hot encoded output representations.
The proposed output code matching networks predict class-
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