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Introduction & Motivation

[1] Liu et al., “Fault injection attack on deep neural network”, ICCAD 2017. 
[2] Zhao et al., “Fault sneaking attack: A stealthy framework for misleading deep neural networks”, DAC 2019.

Renders the attack undetectable when there is no unusual activity.
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• Deep neural networks are susceptible to adversarial weight bit-flip attacks. 
• … through hardware-induced fault injection on DNN memory. 

• A recent concerning threat: finding minimal targeted and stealthy bit-flips. 

• Targeting an attacked source (i.e., a single sample or samples of a class). 

• Preserving expected behavior for un-targeted test samples. 

• No effective defense tailored against stealthy adversarial bit-flips exists. 

Introduction & Motivation

How can we confront the stealthiness objective of an attacker for such 
targeted attacks assuming a well-informed adversary?

Renders the attack undetectable when there is no unusual activity.
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Output dim.: C 
(C: #classes)



-1.0

-0.5

0

0.5

1.0

rWL logits[“dog” | x] rWL logits[“cat” | x]

g(x; {Bl}L�1
l=1 ) BL

0.00
0.01
0.96
0.02
.
.
.
.

0.00

0
0
1
0
.
.
.
.
0

f(x;B) target

'(z)

Standard One-hot Output Encoding (Vanilla)

Each row sets 
the weights that 
contribute to an 
independent 
class score.

Softmax

Output dim.: C 
(C: #classes)
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Proposed Output Code Matching (OCM)

What if we use an output coding scheme where the usual one-hot 
encoding is replaced by partially overlapping bit strings?

Motivation: For any occurring bit-flip to be non-stealthy, 
ideally all class scores should change their values for any input.
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(N: code length)
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Output dim.: N 
(N: code length)

Attacker now has 
to target multiple 
rows to stealthily 

influence the score 
of a single class.

… which will also lead to changes for other class scores as codes are overlapping.

Increasing 
uncertainty across 
several classes in 

the face of 
adversity.

tanh
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Bit string code design: we use 
Hadamard matrices.

Overlap between any given pair of class 
codes is N/2 (N: code length).
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Bit string code design: we use 
Hadamard matrices.

Overlap between any given pair of class 
codes is N/2 (N: code length).

Output dim.: N 
(N: code length)
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Training: 

Inference:



~10x more # bit-flips needed

Results on CIFAR-10

Attacks are well-informed about the defense, i.e., uses the L1-norm objective and class-specific codes.



~4x more # bit-flips needed

Results on CIFAR-10

[5] He et al., “Defending and harnessing the bit-flip based adversarial weight attack”, CVPR 2020.



Results on CIFAR-10

PA-ACC 
decreases from 

90% to 46% 

Breaking 
stealthiness
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Results on ImageNet

~20x more # bit-flips needed

by only OCM finetuning of 
pre-trained models…
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by only OCM finetuning of 
pre-trained models…

~3x more # bit-flips needed



Results on ImageNet

by only OCM finetuning of 
pre-trained models…

PA-ACC 
down to 

50% 

Breaking 
stealthiness



Code: https://github.com/IGITUGraz/OutputCodeMatching 

Thank you for your attention!
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