
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022

Improving Robustness Against Stealthy Weight
Bit-Flip Attacks by Output Code Matching

Ozan Özdenizci 1 2 and Robert Legenstein 1
1 Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria
2 TU Graz - SAL Dependable Embedded Systems Lab, Silicon Austria Labs, Graz, Austria

• Deep neural networks are susceptible to adversarial weight bit-flip attacks.
• … through hardware-induced fault injection on DNN memory.

Introduction & Motivation

• Deep neural networks are susceptible to adversarial weight bit-flip attacks.
• … through hardware-induced fault injection on DNN memory.

• A recent concerning threat: finding minimal targeted and stealthy bit-flips.

• Targeting an attacked source (i.e., a single sample or samples of a class).

Introduction & Motivation

• Deep neural networks are susceptible to adversarial weight bit-flip attacks.
• … through hardware-induced fault injection on DNN memory.

• A recent concerning threat: finding minimal targeted and stealthy bit-flips.

• Targeting an attacked source (i.e., a single sample or samples of a class).

• Preserving expected behavior for un-targeted test samples.

Introduction & Motivation

[1] Liu et al., “Fault injection attack on deep neural network”, ICCAD 2017.
[2] Zhao et al., “Fault sneaking attack: A stealthy framework for misleading deep neural networks”, DAC 2019.

Renders the attack undetectable when there is no unusual activity.

DNNDNN

Memory
(Weights)E

“cat”
X

X: correctly classified
: misclassified

Stealthy
T-BFA

Stealthy Targeted Bit-Flip Attack (T-BFA)

[3] Rakin et al., “T-BFA: Targeted bit-flip adversarial weight attack”, IEEE TPAMI 2021.

Stealthy T-BFA:
source class

target class

DNNDNN

Memory
(Weights)E

“cat”
X

“cat”

“cat”

X: correctly classified
: misclassified

Stealthy
T-BFA “dog” -> “cat”

Stealthy Targeted Bit-Flip Attack (T-BFA)

[3] Rakin et al., “T-BFA: Targeted bit-flip adversarial weight attack”, IEEE TPAMI 2021.

Stealthy T-BFA:
source class

target class

DNNDNN

Memory
(Weights)E

“cat”
X

“cat”

“cat”

“cat”
X

“dog”
X

X: correctly classified
: misclassified

Stealthy
T-BFA

Stealthy
TA-LBF

Stealthy Targeted Attack with Limited Bit-Flips (TA-LBF)

[3] Rakin et al., “T-BFA: Targeted bit-flip adversarial weight attack”, IEEE TPAMI 2021.
[4] Bai et al., “Targeted attack against deep neural networks via flipping limited weight bits”, ICLR 2021.

Stealthy TA-LBF:
source sample

target class

DNNDNN

Memory
(Weights)E

“cat”
X

“cat”

“cat”

“cat”
X

“dog”
X

“cat”

X: correctly classified
: misclassified

Stealthy
T-BFA

Stealthy
TA-LBF last dog -> “cat”

Stealthy Targeted Attack with Limited Bit-Flips (TA-LBF)

[3] Rakin et al., “T-BFA: Targeted bit-flip adversarial weight attack”, IEEE TPAMI 2021.
[4] Bai et al., “Targeted attack against deep neural networks via flipping limited weight bits”, ICLR 2021.

Stealthy TA-LBF:
source sample

target class

• Deep neural networks are susceptible to adversarial weight bit-flip attacks.
• … through hardware-induced fault injection on DNN memory.

• A recent concerning threat: finding minimal targeted and stealthy bit-flips.

• Targeting an attacked source (i.e., a single sample or samples of a class).

• Preserving expected behavior for un-targeted test samples.

• No effective defense tailored against stealthy adversarial bit-flips exists.

Introduction & Motivation

How can we confront the stealthiness objective of an attacker for such
targeted attacks assuming a well-informed adversary?

Renders the attack undetectable when there is no unusual activity.

g(x; {Bl}L�1
l=1) BL

0.00
0.01
0.96
0.02
.
.
.
.

0.00

0
0
1
0
.
.
.
.
0

f(x;B) target

'(z)

Standard One-hot Output Encoding (Vanilla)

Output dim.: C
(C: #classes)

-1.0

-0.5

0

0.5

1.0

rWL logits[“dog” | x] rWL logits[“cat” | x]

g(x; {Bl}L�1
l=1) BL

0.00
0.01
0.96
0.02
.
.
.
.

0.00

0
0
1
0
.
.
.
.
0

f(x;B) target

'(z)

Standard One-hot Output Encoding (Vanilla)

Each row sets
the weights that
contribute to an
independent
class score.

Softmax

Output dim.: C
(C: #classes)

g(x; {Bl}L�1
l=1) BL

0.92
�0.99
�0.98
0.95
.
.
.
.

�0.97

1
�1
�1
1
.
.
.
.
�1

f(x;B) target

'(z)

Proposed Output Code Matching (OCM)

What if we use an output coding scheme where the usual one-hot
encoding is replaced by partially overlapping bit strings?

Motivation: For any occurring bit-flip to be non-stealthy,
ideally all class scores should change their values for any input.

-0.0004

-0.0002

0.0000

0.0002

0.0004
rWL logits[“dog” | x] rWL logits[“cat” | x]

g(x; {Bl}L�1
l=1) BL

0.92
�0.99
�0.98
0.95
.
.
.
.

�0.97

1
�1
�1
1
.
.
.
.
�1

f(x;B) target

'(z)

Proposed Output Code Matching (OCM)

Output dim.: N
(N: code length)

Attacker now has
to target multiple
rows to stealthily

influence the score
of a single class.

tanh

-0.0004

-0.0002

0.0000

0.0002

0.0004
rWL logits[“dog” | x] rWL logits[“cat” | x]

g(x; {Bl}L�1
l=1) BL

0.92
�0.99
�0.98
0.95
.
.
.
.

�0.97

1
�1
�1
1
.
.
.
.
�1

f(x;B) target

'(z)

Proposed Output Code Matching (OCM)

Output dim.: N
(N: code length)

Attacker now has
to target multiple
rows to stealthily

influence the score
of a single class.

… which will also lead to changes for other class scores as codes are overlapping.

Increasing
uncertainty across
several classes in

the face of
adversity.

tanh

g(x; {Bl}L�1
l=1) BL

0.92
�0.99
�0.98
0.95
.
.
.
.

�0.97

1
�1
�1
1
.
.
.
.
�1

f(x;B) target

'(z)

Proposed Output Code Matching (OCM)

Bit string code design: we use
Hadamard matrices.

Overlap between any given pair of class
codes is N/2 (N: code length).

Output dim.: N
(N: code length)

tanh

g(x; {Bl}L�1
l=1) BL

0.92
�0.99
�0.98
0.95
.
.
.
.

�0.97

1
�1
�1
1
.
.
.
.
�1

f(x;B) target

'(z)

Proposed Output Code Matching (OCM)

Bit string code design: we use
Hadamard matrices.

Overlap between any given pair of class
codes is N/2 (N: code length).

Output dim.: N
(N: code length)

tanh

Training:

Inference:

~10x more # bit-flips needed

Results on CIFAR-10

Attacks are well-informed about the defense, i.e., uses the L1-norm objective and class-specific codes.

~4x more # bit-flips needed

Results on CIFAR-10

[5] He et al., “Defending and harnessing the bit-flip based adversarial weight attack”, CVPR 2020.

Results on CIFAR-10

PA-ACC
decreases from

90% to 46%

Breaking
stealthiness

Results on CIFAR-10

Results on ImageNet

~20x more # bit-flips needed

by only OCM finetuning of
pre-trained models…

Results on ImageNet

by only OCM finetuning of
pre-trained models…

~3x more # bit-flips needed

Results on ImageNet

by only OCM finetuning of
pre-trained models…

PA-ACC
down to

50%

Breaking
stealthiness

Code: https://github.com/IGITUGraz/OutputCodeMatching

Thank you for your attention!

Acknowledgments: We thank Jakub Breier and Xiaolu Hou for the fruitful discussions
and comments. This work has been supported by the “University SAL Labs” initiative of
Silicon Austria Labs (SAL).

https://github.com/IGITUGraz/OutputCodeMatching

