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Introduction & Motivation

® Deep neural networks are susceptible to adversarial attacks.
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® Recently successful defenses rely on robust adversarial training objectives.
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Introduction & Motivation

® Deep neural networks are susceptible to adversarial attacks.
® Recently successful defenses rely on robust adversarial training objectives.

® Better robustness with increasing network width and size was observed.

e="> Deployment of large models under resource constraints is challenging.

® \We highlight the need to consider achieving model compactness and sparsity
simultaneously with adversarial robustness in DNNs.

® Robustness-aware network pruning methods showed success.
=> No effective method existed for robust end-to-end sparse training.

_._ How can we enable learning with state-of-the-art robust training objectives
- by end-to-end sparse training under strict connectivity constraints?




Robust Training by Connectivity Sampling

® Optimizing the network with a negative log-posterior loss which combines a
sparse connectivity prior with the robust training

objective.
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Robust Training by Connectivity Sampling

® Optimizing the network with a negative log-posterior loss which combines a
sparse connectivity prior with the robust training

objective.
p(0|z,y) o< p(0) - p(y|z, 0)

® During robust training we update both the connectivity configuration and
the weights such that we are sampling network parameters from the posterior
via stochastic gradient Langevin dynamics.
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[1] Welling & Teh, “Bayesian learning via stochastic gradient Langevin dynamics”, ICML 2011.
[2] Bellec et al., "Deep Rewiring: Training very sparse deep networks”, ICLR 2018.



Robust Training by Connectivity Sampling

® |ncorporating the sparsity prior by a weight re-parametrization trick.
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Enabling Robust End-to-End Sparse Training

® Random: Sparse networks trained from scratch with a randomly initialized
connectivity that is kept static during optimization.

Equivalent to previous “end-to-end robust and sparse training” baselines [3,4].

[3] Ye et al., "Adversarial robustness vs. model compression, or both?”, ICCV 2019.
[4] Sehwag et al., “"HYDRA: Pruning adversarially robust neural networks”, NeurlPS 2020.
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Enabling Robust End-to-End Sparse Training

® Fixed: Sparse networks trained from scratch with a fixed and static connectivity,

where the layer-wise #connections are chosen equal to the #connections that our
method was found to converge at.
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Enabling Robust End-to-End Sparse Training

® Random: Sparse networks trained from scratch with a randomly initialized
connectivity that is kept static during optimization.

® Fixed: Sparse networks trained from scratch with a fixed and static connectivity,
where the layer-wise #connections are chosen equal to the #connections that our

method was found to converge at. e - —
” Rearrangmg connectivities enables ™~

“._robust end-to-end sparse training. -
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e.g., CIFAR-10 classification
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Standard 90% Sparsity ‘ 9rsity

VGG-16 Random Fixed Ours Random Fixed Ours
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Standard AT (Madry et al., 2018) 78.4/44 .9 73.9/43.3 75.8/42.6 78.3/44.5 42.0/27.0 64.6/39.3 69.8/42.1
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Comparisons with Robustness-Aware Pruning

® Qutperforming recent methods for combining

standard AT and model sparsity. CIFAR-10 classification with VGG-16
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[3] Ye et al., “Adversarial robustness vs. model compression, or both?”, ICCV 2019.
[4] Sehwag et al., “HYDRA: Pruning adversarially robust neural networks”, NeurlPS 2020.



Comparisons with Robustness-Aware Pruning

VGG-16

90% Sparsity 99% Sparsity

HYDRA Owurs A HYDRA Ours A

Clean 80.5 80.9 +0.4 73.2 74.0 +0.8
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densely connected networks under different
robust training objectives (e.g., TRADES, RST). WideResNet-28-4
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AA.,  30.60 47.00 +16.40 26.66 45.78  +19.12

[3] Ye et al., “Adversarial robustness vs. model compression, or both?”, ICCV 2019.
[4] Sehwag et al., “HYDRA: Pruning adversarially robust neural networks”, NeurlPS 2020.
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Thank you for your attention!

Code: https://github.com/IGITUGraz/SparseAdversarialTraining

== SAL

=——— SILICON AUSTRIA LABS

TU

Grazme

LLIF

Der Wissenschaftsfonds.

Acknowledgements: This work has been supported by the “University SAL Labs” initiative of
Silicon Austria Labs (SAL) and its Austrian partner universities for applied fundamental research for

electronic based systems. This work is also partially supported by the Austrian Science Fund (FWF)
within the ERA-NET CHIST-ERA programme (project SMALL, project number | 4670-N).

Training Adversarially Robust Sparse Networks via Bayesian
Connectivity Sampling

Ozan Ozdenizci !> Robert Legenstein '

Abstract

Deep neural networks have been shown to be
susceptible to adversarial attacks. This lack of
adversarial robustness is even more pronounced
when models are compressed in order to meet
hardware limitations. Hence, if adversarial robust-
ness is an issue, training of sparsely connected
networks necessitates considering adversarially
robust sparse learning. Motivated by the efficient
and stable computational function of the brain in
the presence of a highly dynamic synaptic connec-
tivity structure, we propose an intrinsically sparse
rewiring approach to train neural networks with
state-of-the-art robust learning objectives under
high sparsity. Importantly, in contrast to previ-
ously proposed pruning techniques, our approach
satisfies global connectivity constraints through-
out robust optimization, i.e., it does not require
dense pre-training followed by pruning. Based
on a Bayesian posterior sampling principle, a net-
work rewiring process simultaneously learns the
sparse connectivity structure and the robustness-
accuracy trade-off based on the adversarial learn-
ing objective. Although our networks are sparsely
connected throughout the whole training process,
our experimental benchmark evaluations show
that their performance is superior to recently pro-
posed robustness-aware network pruning methods
which start from densely connected networks.

1. Introduction

Despite their widely-acknowledged success and deployment
in various application fields, deep neural networks (DNNs)
are known to be highly susceptible to intentionally crafted
adversarial examples that cause incorrect decision making.
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Seminal work by (Szegedy et al., 2013) showed that such
adversarial examples can be created via perturbations that
are hardly perceptible to humans, which exposed important
weaknesses of standard deep learning algorithms. Numer-
ous studies explored adversarial defense methods to such
threats. Notably successful approaches rely on harnessing
adversarial examples during model training (Goodfellow
et al.,, 2015; Madry et al., 2018), and its immediate ex-
tensions with robust training losses using regularization
schemes to diminish the generalization gap based on an
inherent robustness-accuracy trade-off (Tsipras et al., 2019;
Zhang et al., 2019; Wang et al., 2020).

Recent work further suggests better robustness with increas-
ing network width and complexity (Madry et al., 2018;
Nakkiran, 2019; Wu et al., 2020). Deployment of such large
models, however, is challenging in resource-constrained
settings. Thus, under consideration of memory and compu-
tational demand concerns, this highlights a need to consider
achieving model compactness and sparsity simultaneously
with adversarial robustness in DNNs.

There has been a growing interest in tackling the problem of
achieving robustness against adversarial attacks with very
sparsely connected neural networks (cf. Section 2). Success
was so far demonstrated by robustness-aware pruning of
adversarially trained dense networks (Sehwag et al., 2019;
2020). Importantly these studies only considered naive “end-
to-end sparse learning” baseline comparisons with a random
and static sparse network initialization. Subsequently, these
intrinsically sparse models were found to yield inferior ro-
bustness than compressed models obtained with robustness-
aware pruning methods. However pruning an adversarially
trained DNN does not allow robust training under strict spar-
sity constraints. To date, no effective method existed for
robust end-to-end sparse training to meet such limitations,
where the challenge is to enable sparse network connections
to rearrange during training such that a well-performing
robust and sparse model can be configured.

In this paper we present a method for end-to-end sparse
training of neural networks with robust adversarial train-
ing objectives. Our approach is motivated by the dynamic
synaptic connectivity structure in the brain, which maintains
its stable computational function in the presence of an under-
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