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Introduction & Motivation

Deployment of large models under resource constraints is challenging. 

No effective method existed for robust end-to-end sparse training.

How can we enable learning with state-of-the-art robust training objectives 
by end-to-end sparse training under strict connectivity constraints?



• Optimizing the network with a negative log-posterior loss which combines a 
sparse connectivity prior with the robust training objective.
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• Optimizing the network with a negative log-posterior loss which combines a 
sparse connectivity prior with the robust training objective. 

• During robust training we update both the connectivity configuration and 
the weights such that we are sampling network parameters from the posterior 
via stochastic gradient Langevin dynamics.

Robust Training by Connectivity Sampling

[1] Welling & Teh, “Bayesian learning via stochastic gradient Langevin dynamics”, ICML 2011. 
[2] Bellec et al., “Deep Rewiring: Training very sparse deep networks”, ICLR 2018.
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Robust Training by Connectivity Sampling
• Incorporating the sparsity prior by a weight re-parametrization trick.
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Enabling Robust End-to-End Sparse Training

Equivalent to previous “end-to-end robust and sparse training” baselines [3,4].
[3] Ye et al., “Adversarial robustness vs. model compression, or both?”, ICCV 2019. 
[4] Sehwag et al., “HYDRA: Pruning adversarially robust neural networks”, NeurIPS 2020.

• Random: Sparse networks trained from scratch with a randomly initialized 
connectivity that is kept static during optimization.
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• Random: Sparse networks trained from scratch with a randomly initialized 
connectivity that is kept static during optimization. 

• Fixed: Sparse networks trained from scratch with a fixed and static connectivity, 
where the layer-wise #connections are chosen equal to the #connections that our 
method was found to converge at. 

Rearranging connectivities enables 
robust end-to-end sparse training.



Comparisons with Robustness-Aware Pruning

[3] Ye et al., “Adversarial robustness vs. model compression, or both?”, ICCV 2019. 
[4] Sehwag et al., “HYDRA: Pruning adversarially robust neural networks”, NeurIPS 2020.

• Outperforming recent methods for combining 
standard AT and model sparsity. 
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densely connected networks under different 
robust training objectives  (e.g., TRADES, RST). 

• Enabling robust and strictly-sparse training on-
hardware and shows robustness under query-
based black box attacks.
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Code: https://github.com/IGITUGraz/SparseAdversarialTraining 

Thank you for your attention!
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