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Introduction & Motivation

• Problem: Restoration of adverse weather related degradations from images. 

• Approach: Generative DNNs trained on synthetic clean-distorted image pairs. 

• We develop a novel approach based on denoising diffusion models.  
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Background: Denoising Diffusion Probabilistic Models
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Background: Denoising Diffusion Probabilistic Models
Summary: Training a DNN that can iteratively denoise an image by reversing a 

diffusion process that destroys the data structure by adding noise.
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q(xt�1 |xt) is unknown!

Background: Denoising Diffusion Probabilistic Models
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Fixed Forward (Diffusion) Process
forward process

• The forward process (i.e., diffusion process) 
gradually adds Gaussian noise according to a 
known variance schedule                                 .

joint distribution



• We can also directly jump to any time-step using:
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Fixed Forward (Diffusion) Process
forward process

and

where

the noise schedule is 
designed such that:                           
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Generative Reverse (Denoising) Process

known

• The reverse process is the joint distribution, with 
learned Gaussian transitions starting from noise.
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x0 ∼ q(x0)

reverse process
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Summary: Denoising Diffusion Probabilistic Models



Sequentially remove the estimated “added noise” starting 
from an image sampled from a Gaussian noise distribution.
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Optimizing model parameters that predicts 
the added noise between t and t-1

Summary: Denoising Diffusion Probabilistic Models



Patch-based Diffusive Image Restoration: Training 
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• Our approach: Training an image-
conditional & patch-based diffusion 
model to enable size agnostic 
image restoration. 
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• Our approach: Training an image-
conditional & patch-based diffusion 
model to enable size agnostic 
image restoration. 

• Comes down to a simple learning 
algorithm that needs low GPU 
memory to train and evaluate 
such a model.



Patch-based Diffusive Image Restoration: Inference 
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How to merge restored patches into a 
whole image?
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At each sampling time t = T, … ,1 

1. use the “noise estimator” network 
for all overlapping patches to 
estimate the added noise at time t 

How to merge restored patches into a 
whole image?
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Patch-based Diffusive Image Restoration: Inference 
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At each sampling time t = T, … ,1 

1. use the “noise estimator” network 
for all overlapping patches to 
estimate the added noise at time t 

2. compute “mean estimated noise” 
based sampling updates for these 
overlapping regions, and form the 
restored whole-image at time t

How to merge restored patches into a 
whole image?
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Patch-based Diffusive Image Restoration: Examples 
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Results: Image Desnowing



Results: Image Desnowing



Results: Image Deraining & Dehazing
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Results: Removing Raindrops



Results: Removing Raindrops



Results: Multi-Weather Restoration



Results: Real-World Image Restoration

Input Image TransWeather Ours (WeatherDiff)
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Results: Real-World Image Restoration

TransWeather Ours (WeatherDiff)



Paper: https://arxiv.org/pdf/2207.14626.pdf  
Code: https://github.com/IGITUGraz/WeatherDiffusion 

Thank you for your attention!

https://arxiv.org/pdf/2207.14626.pdf
https://github.com/IGITUGraz/OutputCodeMatching

